

Literal Equations and Using Formulas to Solve Problems Guided notes- PRINT and follow along with podcast)

Goal /objectives

- 1 Solve for a Variable in a Formula
- 2 Use Formulas to Solve Problems

If I give you a literal equation (equation taken from physics/geometry/finance/ and other fields) can you manipulate it to solve for a given variable?

Try this one with me- listen to podcast if you are stuck.

Solve $V=\pi r^2 h$... for h.

Example:

Solve y = mx + b for m.

Some important formulas- I recommend devoting these to memory if you plan on taking future math classes

Figure	Formulas
Cube	Volume: $V = s^3$ Surface Area: $S = 6s^2$
Rectangular Box	Volume: $V = lwh$ Surface Area: $S = 2lw + 2lh + 2wh$
Sphere	Volume: $V = \frac{4}{3}\pi r^3$ Surface Area: $S = 4\pi r^2$

Figure	Formulas
Trapezoid h B	Area: $A = \frac{1}{2}h(B+b)$ Perimeter: $P = a+b+c+B$
Parallelogram	Area: $A = bh$ Perimeter: $P = 2a + 2b$
Circle	Area: $A = \pi r^2$ Circumference: $C = 2\pi r = \pi d$

Figure	Formulas
Right Circular	Volume: $V = \pi r^2 h$
Cylinder	Surface Area: $S = 2\pi r^2 + 2\pi rh$
Cone	Volume: $V = \frac{1}{3}\pi r^2 h$

Many times doing a word problems just involves choosing the right geometric formula out of your memory and plug and chug of the correct variables.

Example:

A sailboat has a triangular sail with an area of 96 feet and a height that is 12 feet high. What is the length of the base of the sail?

Ans

The length of the base of the sail is 16 feet.

Example

Suzy is making a planter out of an empty can for her mother's birthday. She has 157 cubic inches of soil to use. Find the radius of the can if it has a height of 8 inches.

ans

The radius of the can is 2.5 inches.